
tts 02139

PHYSICAL REVIEW E MARCH 2000VOLUME 61, NUMBER 3
Depinning of kinks in a Josephson-junction ratchet array

E. Trı́as,1 J. J. Mazo,1,2 F. Falo,2 and T. P. Orlando1
1Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachuse

2Departamento de Fı´sica de la Materia Condensada and ICMA, CSIC—Universidad de Zaragoza, E-50009 Zaragoza, Spain
~Received 28 July 1999!

We have measured the depinning of trapped kinks in a ratchet potential using a fabricated circular array of
Josephson junctions. Our ratchet system consists of a parallel array of junctions with alternating cell induc-
tances and junctions areas. We have compared this ratchet array with other circular arrays. We find experi-
mentally and numerically that the depinning current depends on the direction of the applied current in our
ratchet ring. We also find other properties of the depinning current versus applied field, such as a long period
and a lack of reflection symmetry, which we can explain analytically.

PACS number~s!: 05.40.2a, 74.50.1r, 85.25.Na
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I. INTRODUCTION

Disorder and noise are not always undesirable in phys
systems. Inhomogeneity has been shown to control cer
types of spatiotemporal chaos@1#, while noise can lead to an
enhancement of the signal-to-noise ratio because of stoc
tic resonance@2#. Another more recent counterintuitive resu
is that of transport of a Brownian particle in a ratchet pote
tial @3#. Though initially proposed as a model for molecul
motors in biological organisms@4#, ratchets can also serve a
a model to study dissipative and stochastic processe
nanoscale devices.

A ratchet potential is a periodic potential which lacks r
flection symmetry@in one dimension~1D! V(x)ÞV(2x),
see Fig. 1#. A consequence of this symmetry breaking is t
possibility of rectifying nonthermal, or time correlated, flu
tuations@5#. This can be understood intuitively. In Fig. 1,
takes a smaller dc driving force to move a particle from
well to the right than to the left. In other words, the spat
symmetry of the dc force is broken. Under an ac drive~so-
called ‘‘rocking ratchets’’! or time-correlated noise, particle
show net directional motion in the smallest slope directi
This effect can be used in devices in which selection of p
ticle motion is desired.

Because of this effect, ratchet engines have been prop
as devices for phase separation@6#, and very recently as a
method of flux cleaning in superconducting thin films@7#. A
ratchet mechanism has also been proposed as a meth
prevent mound formation in epitaxial film growth@8#.

Josephson junctions are solid state realizations of a sim
pendulum. By coupling them, it is possible to make a phy
cal realization of model systems such as the Fren
Kontorova model for dislocations@9,10# or the 2D X-Y
model @11# for phase transitions. In particular, a parallel J
sephson array~see Fig. 2! is a discrete version of the sine
Gordon equation and it has been used to experimen
study soliton~usually referred to as kinks, vortices, or flu
ons! dynamics on a discrete lattice@10#.

In parallel arrays, kinks behave as particles in which
idea of Brownian rectification can apply. The applied curre
is the driving force. If the kink experiences a ratchet pote
tial, then the current needed to move the kink in one dir
PRE 611063-651X/2000/61~3!/2257~10!/$15.00
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tion is different than the current to move it in the oppos
direction.

In this paper, we will show that we can design almost a
type of 1D pinning potential in a parallel Josephson array
choosing an appropriate combination of junction critical c
rents and plaquette areas. Indeed, it has been shown@12# that
two alternating critical currents and plaquettes areas
enough to provide a ratchet potential for fluxons. As we w
show below, this is not the only possible design for a ratc
potential.

With only an ac driving current these arrays show dc vo
age steps of stability at multiples of the external ac dr
amplitude. This occurs when the equivalent ac driving fo
becomes commensurate with the period of the ratchet po
tial. This behavior could open the possibility of using the
arrays for a voltage standard device or a microwave dete
without a dc bias current. Moreover, the same ideas of fl
cleaning underlying Ref.@7# could be applied to 2D array
using the designs described here.

The paper is organized into five sections. Section II int
duces the theoretical framework for the study of inhomo
neous parallel Josephson arrays. We find that inhomo
neous arrays present a long periodicity with respect to
number of kinks in the array. To test the theory, we ha
designed four different Josephson junction rings and m
sured the depinning current of the array versus the app
magnetic field. The experimental results are shown in S

FIG. 1. Example of a ratchet potential. The particle sitting
the well requires less force to move through the first peak to
right than to move to the left. Therefore, there is a preferred dir
tion of motion.
2257 ©2000 The American Physical Society
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III. In Sec. IV we discuss some of the properties of the mo
and show that they agree well the experimental results.
also show that a combination of three different critical c
rent junctions is sufficient to design a ratchet potential.
Sec. V we present the conclusions of our work and propo
number of new experiments.

II. THEORETICAL FRAMEWORK

A. Circuit model

Figure 2 shows the circuit diagram for an array of Jose
son junctions. Each junction is marked by an ‘‘3 ’ ’ and we
will connect N junctions in parallel with short wires a
shown. Coupling of the junctions occurs through the g
metrical inductances of the cells. We will neglect all mutu
inductances and consider only the self-inductance of e
cell L j . The induced flux in each cell is thenL j times the
mesh current of the cell which in this simple geometry c
be easily seen to equal the current through the top horizo
link I b

j . We will use I ext for the uniformly applied externa
bias current per junction as shown in Fig. 2. We then de
the mesh current as the current passing through this top h
zontal wire. With this definition we can place the loop se
inductanceL j on the top horizontal link. We emphasize th
this inductance is not the wire inductance, but the s
inductance of the cell so that only one such elemen
needed per cell.

The junctions will be modeled by the parallel combinati
of an ideal Josephson junction with a critical current ofI c

j , a
capacitorCj , and a resistanceRj . The ideal Josephson junc
tion has a constitutive relation ofI j5I c

j sinwj wherew j is the
gauge-invariant phase difference of the junction. Wh
there is a voltage across the junction,v j , then v j
5(F0 /2p)dw j /dt. Since we will haveN parallel junctions,
in our arrayj 51 to N.

The circuit equations result from applying current cons
vation and flux quantization@13#. Current conservation at th
top node of junctionj yields

Cj v̇ j1
v j

Rj
1I c

j sinw j5I ext1I b
j 2I b

j 21 . ~1!

Flux quantization of cellj yields

F0

2p
~w j 112w j !5F j , ~2!

whereF j is the total flux in cellj.

FIG. 2. Circuit diagram for an inhomogeneous parallel Jose
son array. Each junction has a critical currentI c

j and each cell has
an inductance ofL j .
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Due to the linearity of Maxwell’s equations,F j can be
decomposed into two parts: the induced fluxF ind

j , and the
external fluxFext

j which is the applied fieldBext times the
cell areaAj . The induced flux is simplyL j times the mesh
current of the cell, which has been defined to equalI b

j . Then,

Cj v̇ j1
v j

Rj
1I c

j sinw j5I ext1F j1
F0

2p F 1

L j
~w j 112w j !

1
1

L j 21
~w j 212w j !G ~3!

with F j5(Fext
j 21/L j 212Fext

j /L j ).
This circuit is realizable by varying cell and junction a

eas. The cell areaAj will determine the self-inductance. IfW
is the width of the cell andDxj is its length, thenL j

'm0Dxj as long asW;Dxj . SinceFext
j 5WDxjBext, we

see thatFext
j /L j'WBext/m0 and is approximately constan

for all j. The junction area determinesI c
j , Cj , and Rj but

they are not independent since the capacitance and cri
current are linearly proportional to the junction area and
resistance is inversely proportional to the junction area. T
I c

j Rj product and theI c
j /Cj ratio of each junction are constan

for every junction.
We will normalize all the currents byI c

!5max(Ic
j ) and

time by t5AF0C! /2pI c
! whereC!5max(Cj). Then,

hjN~w j !5 i ext1 f j1l j~w j 112w j !1l j 21~w j 212w j !,
~4!

where N(w j )5ẅ j1Gẇ j1sinwj @14#. The ratio of critical
currents ishj5I c

j /I c
! and the inductances are normalized

l j5F0/2pI c
!L j . Finally, f j52p f (l j 21Aj 21 /A!2l jAj /

A!), where f is the frustrationBextA! /F0. We have used
A!5max(Aj).

To complete the system we need to specify the bound
conditions. There are two types: open, if the junctions form
linear row and periodic, if the junctions form a closed rin
For the open boundary condition we setl05A050 in Eq.
~4! for junction j 51. At the other end of the array,j 5N, we
setlN5AN50.

For the periodic boundary conditions we letl05lN and
A05AN . Furthermore, a circular system poses a topolog
constraint onw j since they are angular variables and ha
2p periodicity: w j 1N5w j12pM . In particular w05wN
22pM andwN115w112pM . HereM is referred to as the
winding number and represents the number of kinks in
system.

In this paper we will discuss systems with period
boundary conditions. Since the productl jAj is roughly con-
stant throughout the array we considerf j50 in the simula-
tions of the rings we present@15#. We have checked numeri
cally that for the experiments reported here, these terms
not significantly alter our results.

B. Symmetries

The system of equations~4! presents an odd inversio
symmetry under the changeM→2M , w i→2w i , and i ext
→2 i ext as is expected from Maxwell’s equations. The r
sponse of the array to an external current will reflect t

-



lu
tiv

cu

ic
he

n

ew

-

he

t

-
e-

al

a
it

di

d
te

ea
tin

e

e
b

r in
the
ity
the
pe-

gs
s

as
s a

s

ette

ur-
(3
5

we
y
ells

PRE 61 2259DEPINNING OF KINKS IN A JOSEPHSON-JUNCTION . . .
symmetry. In particular,I dep(2M )52I dep(M ). Here,I dep is
the maximum value of the applied current for which a so
tion ẇ j50 can not be sustained in the presence of a posi
or negative external current. We will useI dep1 to refer to the
absolute value of the depinning current as the external
rent is increased~1! or decreased~2! from zero.

Another symmetry of the equations refers to the period
ity of the system when varying the number of kinks in t
array. In the case of a regular ring~all the cells and junctions
are equal! this periodT is equal to the number of junctionsN
@16#.

A method of calculating the periodicity inM for the gen-
eral case studied here is to use the simple transformatio

c j5w j12pmj , ~5!

wheremj are integers. The equations of motion in the n
variables are the following:

hjN~c j22pmj !5l j~c j 112c j !1l j 21~c j 212c j !

22pl j~mj 112mj !

22pl j 21~mj 212mj !1 i ext1 f j ,

~6!

where N(c j22pmj )5N(c j ). The new boundary condi
tions are

c j 1N5c j12p~M1T!, ~7!

whereT5mj 1N2mj . Thus after the transformation~5! we
recover the same equations as Eq.~4! but with the number of
kinks equal toM1T so that the equations are periodic in t
number of kinks in the array with a periodT.

To calculateT we take out themj dependence on the righ
hand side of Eq.~6! by choosingmj such thatl j (mj 11
2mj )1l j 21(mj 212mj )50. Remarkably, the resulting pe
riod is independent ofhj and only depends on the ratio b
tween the consecutivel ’s. In the appendix we find a formula
for the periodicity in the number of kinks for the gener
system.

Here we are going to develop the case of a ring that w
measured: a ring with an even number of junctions and w
alternating cell areas. In this case there are only twol ’s
involved. Let l j5l1 (l2) for j odd~even! and l1 /l2
5p/q. If we let (mj 212mj )52q and (mj 112mj )5p ~for
evenj for instance!, we satisfy the above condition.

The period is calculated from the new boundary con
tions

T5mN112m15~p1q!N/2. ~8!

For the regular arrayp5q51 and we recover the expecte
result of T5N. Also, we note that in order to have a fini
period we need the ratios betweenl ’s to be rational num-
bers. This condition will almost never be satisfied in a r
experiment. Thus we see that a simple design of alterna
cell areas can result in an arbitrarily long period~that could
be equal to`) when varying the number of kinks in th
array.

A similar calculation can be made for the case of an op
array. As no topological constraint for the phases can
-
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imposed, the number of kinks in the array does not appea
our equations. We consider instead the periodicity of
system with the external field. In this case, the periodic
depends on the ratio between the cell areas instead of
ratio between the inductances. It can be shown that the
riod in f 5BextA! /F0 is equal toq, whereA2 /A15p/q and
A15A!.

III. EXPERIMENTAL RESULTS

We have designed and fabricated the four different rin
~a!, ~b!, ~c!, and~d! schematically shown in Fig. 3. The ring
are fabricated with a Nb-Al2Ox-Nb trilayer technology with
a junction critical current density of 1 kA/cm2. The current is
injected through bias resistors in order to be distributed
uniformly as possible. We measure the dc voltage acros
single junction@17# and each ring consists ofN58 junc-
tions.

Figure 3~a! is a regular ring with equal critical current
and plaquette areas. Figure 3~b! has alternating critical cur-
rents with a ratio of 0.43. Figure 3~c! has alternating
plaquette areas with a ratio ofl ’s of 1.8. Finally, Fig. 3~d!
has both alternating critical currents and alternating plaqu
areas. It will be shown experimentally that only~d! has a
ratchet pinning potential.

The outer diameter of each ring is 36mm with an area
;4070mm2. The inner diameter is 18mm and it consists of
an island of niobium that is used to extract the applied c
rent. The rings also have either small junctions
33 mm2) or alternating small and large junctions (4.2
34.25mm2). The designedI c ratio is 0.5, but in practice the
junction areas have rounded corners and experimentally
find the I c ratio to be 0.43. We vary the cell inductance b
alternating the cell area. In this case, the angles of the c
are 60° and 30°.

FIG. 3. The four different measured arrays:~a! regular ring,hj

51 andl j50.11, ~b! ring with alternating critical currents,hj51
and hj 1150.43, l j50.043, ~c! ring with alternating cell area,hj

51, l j50.08, andl j 1150.15, ~d! ratchet ring with alternating
critical currents and cell areas,hj51, hj 1150.43, l j50.035, and
l j 1150.06. These parameters are calculated atT50 K.
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2260 PRE 61E. TRÍAS, J. J. MAZO, F. FALO, AND T. P. ORLANDO
Both G andl are mostly determined from material pro
erties of the samples and the junctionI c . SinceI c varies with
temperature, both parameters can be experimentally
trolled to some extent. In generalG andl can be made large
by up to a factor of 10 by raising the sample temperature.
the temperature reachesTc , however, most of the measure
features become too smeared to be distinguished.

The temperature dependence ofI c is modeled well by the
standard Ambegaokar-Baratoff relation withI c(0)Rn51.9
mV @18#. We find thatI c(0)595mA for the small junctions
andI c(0)5224mA for the larger junctions. We will normal-
ize all our parameters with the largestI c of a given ring.
From the above values, we can estimateG(0)50.17 which,
due to the constantI cRn product, is independent of junctio
area. The inductances are estimated from a numerical p
age that extracts inductances from complex 3D geometrie
conductors@19#. In this sample the loop inductance isL
523.5 pH for the small cells andL542.6 pH for the large
ones@arrays~c! and ~d!#. For the cells in rings~a! and ~b!
L533.5 pH. To calculate the dimensionless penetrat
depth l(0)5F0/2pLI c(0) we useI c595mA if the ring
only has small junctions@~a! and~c!# and for those rings tha
also have large junction@~b! and ~d!# we use 224mA.

The current-voltageIV curves are measured by applying
perpendicular magnetic field of 0 to 300 mG through a m
netic coil that is mounted on the radiation shield of o
probe. We heat the sample aboveTc59.2 K and cool down
to a temperatureT,Tc . We cool our ring in the presence o
a flux that corresponds to approximatelyM flux quanta. Flux
quantization will cause the expulsion of extra flux so that
ring contains exactlyM flux quanta after undergoing a supe
conducting transition.

Figure 4 shows typicalIV’s for the different rings shown
in Fig. 3. Figure 4~a! is for a regular ring whenM51. The
IV is symmetric with respect to applied current direction.
the current is increased from the superconducting state
voltage remains at zero. We define the depinning curr
when the array has a voltage greater than a threshol

FIG. 4. SampleIV curves for the four rings considered in Fig.
@~a! corresponds to Fig. 3~a! and so on#. Rings~a!, ~b!, and~c! have
symmetricIV ’s as the current is swept in the positive and negat
direction. The measurements correspond toM51. Ring ~d! is the
ratchet ring as can be seen from the difference in the depin
current in the positive and negative direction.
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1.5mV. Our computer controlled equipment also corrects
any voltage drift of our amplifiers. As the current increas
beyond the depinning value, there is a sequence of volt
steps where as the current increases the voltage remains
tively constant. There are at least two mechanisms that
cause these steps: resonances between the circulating
and radiated linear waves, and instabilities of the whirli
branch@10#. We have verified that the voltage positions co
respond to these two mechanisms.

Figure 4~b! is for a ring with alternating critical current
when M51. We again see that theIV is symmetric with
respect to current direction and that there are voltage st
These steps are of the same origin as in the regular r
However, in this ring the linear dispersion relation that d
termines the resonance condition is split into two branch
This splitting is analogous to the optical and acous
branches of a crystal with a two atom basis. Figure 4~c! is for
a ring with alternating areas. The characteristics are sim
to that of ring~b! including a splitting of the linear dispersio
relation. Since for these three ringsI dep15I dep2 , we can
infer that the kink is traveling in a symmetric pinning pote
tial as theoretically expected.

Figure 4~d! shows anIV for the ring with both alternating
critical currents and areas. TheIV of this ring is qualitatively
different from the other rings due to the ratchet nature of
pinning potential. We see thatI dep in the positive direction is
;65% of the depinning current in the negative direction. W
also note that there are different voltage steps excited in
up and down direction. The steps are of the same natur
the explained resonances above and there is also a spl
of the dispersion relation. In the rest of the article we w
focus onI dep measurements as a signature for ratchet beh
ior in our arrays.

Figure 5 shows a measurement of the depinning cur
vs applied flux for the regular ring shown in Fig. 3~a!. The
temperature is 8.8 K,G50.5 while l50.9. Each plateau
represents a different number of kinks trapped in the ri
This is a direct result of flux quantization: The ring on
allows integer number of flux quanta even if we have appl
slightly more or less flux. SinceN58 and this ring has a

e

g

FIG. 5. Measured critical currents vs applied flux for a regu
ring. To calculate applied flux, we multiply the applied field by th
ring area. A constant offset has also been subtracted to accoun
the ambient magnetic field. The measurement was done atT58.8 K
with G'0.5 andl'0.9.
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PRE 61 2261DEPINNING OF KINKS IN A JOSEPHSON-JUNCTION . . .
symmetric pinning potential, we expectI dep15I dep2 ~no
ratchet effect!, and a period of 8 as can be seen in the m
surements. We also see thatI dep has a reflection symmetr
aboutM5T/2.

When we alternate the critical currents in our ring w
expect the same qualitative features ofI dep as in the regular
ring. Figure 6 shows a measurement of the depinning cur
vs applied flux for the ring shown in Fig. 3~b! which has
alternating critical currents. There are plateaus correspon
to different values ofM just as in the regular ring and there
up-down symmetry and periodicity withM58 as expected
and a reflection symmetry aboutM54.

If we make all the critical currents constant and vary on
the cell area as in Fig. 3~c!, then we alternate the values ofl
but the pinning potential remains symmetric. AtT59 K, l l
for the large cell is'0.7 andls for the small cell is'1.3.
The result of measuringI dep is shown in Fig. 7. As expecte
the data is symmetric with respect to current direction
kinks are not traveling in a ratchet pinning potential. Ho
ever, unlike in the previous rings,I dep is no longer periodic
with M58. As shown in Sec. II B, the period will depend o

FIG. 6. Measured critical currents vs applied flux for a ring w
alternating critical currents. The applied flux was calculated as
scribed in Fig. 5. The measurement was done atT59 K with G
'0.7 andl'0.9.

FIG. 7. Measured critical currents vs applied flux for a ring w
alternating cell areas. The applied flux was calculated as desc
in Fig. 5. The measurement was done atT59 K with G'0.7 and
l l'0.7 andls'1.3.
-
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the ratio of the inductances. For our geometryLl /Ls'1.8 or
9/5 which implies a period of 56. However, in any physic
array the inductance ratio is rarely going to be exactly a ra
of small numbers. Just on physical grounds we expect a v
large period, if any, in the experiments. In Fig. 7 we ha
measured the depinning current fromM5215 to M515
and though there is some apparent self-similarity in the d
it is not periodic. Though there is no period, we can s
prepare our ring systematically withM51, 2, 3, etc., by
counting the plateaus. But instead ofM51 andM511N
yielding the same dynamical state as in the regular ring, t
are now distinguishable.

When we alternate both the critical current and the c
inductances as in Fig. 3~d!, it is possible to form a ratche
pinning potential~see Fig. 1!. Figure 8 shows an experimen
on such a ring. Since the period depends on the inducta
ratio, we experimentally expect a very long period. This
borne out by the data as there is no sign of a period in
range from M5215 to 15. We also expect thatI dep1
ÞI dep2 since the kink is traveling in a ratchet pinning pote
tial. The line shown in the center of the figure varying abo
I dep50 is the difference between theI dep1 and I dep2 .
Clearly, the force to move kinks in one direction is differe
than the force to move it in the opposite direction. The ma
nitude and direction of this ratchet effect depends on
number of kinks in the system.

As a further test of the symmetries and periods of
experiments, we have numerically integrated Eq.~4! using a
variable step size explicit 4th order Runge-Kutta meth
The kink numberM is set in the boundary junctions. Th
initial conditions arew j52pM j /N. That is, we stretch the
kinks across the full array at the start of the simulation. W
then sweep the applied current in the positive direction u
a voltage develops in the array and calculateI dep1 . We re-
peat the procedure while sweeping the current in the nega
direction to calculateI dep2 .

Figure 9 shows the simulations with parameters simila
those of the experiments. Both Figs. 9~a! and 9~b! have al-
ternatingl ’ s with l j50.3 andl j 1150.54 for j odd. The
inductance ratio is 0.54/0.359/5 so using Eq.~8! the ex-

e-

ed

FIG. 8. Measured critical currents vs applied flux for a ratch
ring. The applied flux was calculated as described in Fig. 5. T
measurement was done atT58.8 K with G'0.5 andl l'0.3 and
ls'0.6. The line varying aboutI dep50 is the difference between
I dep1 and I dep2 .
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2262 PRE 61E. TRÍAS, J. J. MAZO, F. FALO, AND T. P. ORLANDO
pected period isT556. We find this period in the simula
tions. Figure 9~a! hashj51 so we expect the depinning cu
rent to be up-down symmetric, i.e., no ratchet effect, as
be seen in the data. Since we always have an odd inver
symmetry @ I dep1(M )5I dep2(2M )5I dep2(T2M )#, I dep is
symmetric aboutM556/2528. This reflection symmetry o
I depaboutT/2 is generic for any array that is not ratchet sin
it is a direct consequence of the up-down symmetry of
currents. We also find this symmetry in the experiments
nonratchet arrays.

Figure 9~b! has junctions with two alternating critical cu
rents (hj51 andhj 1150.43 for j odd! as well as two alter-
natingl ’s (l j50.3 andl j 1150.54 for j odd!. We now ex-
pect the kinks to travel in a ratchet pinning potential so t
I dep1 does not equalI dep2 , thoughI dep still has an odd in-
version symmetry. Just as in the experiments we see tha
effect of the ratchet, and rectification direction, depends
the number of kinks. Also,I dep does not have the expecte
reflection symmetry aboutT/2. In summary, the simulation
show the same features as the experiments and also a
quantitatively with our predictions.

IV. DISCUSSION

The equations developed in Sec. II describe kink pro
gation through a discrete inhomogeneous medium. In
section we will try to get a better understanding of the s
tem by briefly analyzing the continuous limit of our discre
equations. We will then go back to our discrete equatio
and approximate the pinning potential for a single kink. W
the analysis, it will become apparent how it is possible
construct many types of pinning potentials, including ratc
ones, in the inhomogeneous array.

To derive the continuous limit of the equations, let 2l̄ j
5l j1l j 21 anddl j5l j2l j 21. Substituting in Eq.~4!, we
get

hjN~w j !5l̄ j ]xxw j1dl j ]xw j1 f j1 i ext, ~9!

FIG. 9. ~a! Simulation forN58 ring with only alternatingl ’s of
l l50.3 andls50.54, andhj51. ~b! Simulation forN58 ratchet
ring with both alternatingl ’s of l j50.3 andl j 1150.54 and criti-
cal currents ofhj51 andhj 1150.43. Line shown aboutI dep50 is
the difference betweenI dep1 and I dep2 .
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where ]xxw j5w j 1122w j1w j 21 represents a discrete La
placian while]xw j5(w j 112w j 21)/2 is just the center dif-
ference of the first order derivative. To arrive at a continuo
limit we expand our variables as Taylor series inDxj . The
cell area isWDxj while the cell inductanceL j5GDxj as
Dxj→0 whereG is a geometric constant. Thereforef j50 as
Dxj→0 and the discrete operators are replaced by their c
tinuous derivatives

h~x!N~w!5l~x!]xxw1]xl~x!]xw1 i ext

5]x@l~x!]xw#1 i ext. ~10!

If l andh are constant then we have the usual sine-Gor
equation. In this case the equations have a reflection sym
try and it is not possible to have a ratchet pinning potent
If l is dependent on position, the spatial coupling is ana
gous to inhomogeneous diffusion, anisotropic heat cond
tion, or waves traveling in an anisotropic medium. We a
note thatf j in the discrete equations is essentially a pert
bation to the continuous model that is dependent on the e
discretization employed and is usually small. Thus, in or
to get a ratchet pinning potential, there are three ways
break the reflection symmetry of the equations: with an
propriateh(x), l(x), or a combination of both.

To calculate how the parametershj andl j determine the
pinning potential, we will use a perturbative approach. In
limit where alll j→0 the kink will approach a step functio
@20#. A stable kink configuration will have the kink sitting in
a potential well in the middle of a plaquette. Let the kink l
between junctionj and j 11. The nearest phases toj and j
11 will be small in this limit. As an approximation we le
w j5a andw j 1152p2b and set all the other phases to 0
2p. We can solve fora and b by minimizing the static
energy of the system

H5(
j

Fl j

2
~w j 112w j !

21hj~12cosw j !G . ~11!

Here we have ignored the kinetic energy since we are o
concerned with kink depinning@21#.

Substituting the approximations forw j andw j 11 , we are
left with

H5
1

2
~l j1l j 11!b21

1

2
~l j 211l j !a

222pl j~a1b!

1l jab12p2l j1hj~12cosa!1hj 11~12cosb!.

~12!

To solve fora and b we minimize the energy:]H/]a
50 and]H/]b50. The resulting equation is transcenden
because it depends on the sine ofa and b and would in
general have to be solved numerically. However, for the s
tems of smalll ’s studied here, the corrections are small a
we can linearize the sine terms@sin(x)'x# to solve fora and
b. We have found that for the parameters used in this pa
the linear approximation is sufficiently accurate to descr
the numerically calculated pinning potentials.

After linearizing the sine term we are left with

a52l jp~hj 111l j 11!/D,

~13!
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b52l jp~hj1l j 21!/D,

whereD5(hj1l j1l j 21)(hj 111l j 111l j )2l j
2 .

To get an idea of how the energy depends on the par
eters, we can substitute back into Eq.~11! and expand the
energy as a series with respect tol j . The result is

H52p2l j1O~l j
2!. ~14!

For smalll j , the height of the pinning potential when th
kink is the middle of a plaquette is determined byl j . The
second order term has corrections due tohj 21 , hj andl j 21
andl j 11.

As the kink moves through the pinning potential it w
reach a point of maximum energy which in the limit whe
all l j→0 occurs when the kink is on the top of a junction.
this limit the nearest phases can have small corrections.
let w j 215a, w j5p2b, andw j 1152p2g. Again we sub-
stitute the corrections and set all the other phases to 0 orp.
Minimizing the energy with respect toa, b, andg and lin-
earizing the sine terms yields:a5l j 21(p2b)/(hj 21
1l j 221l j 21), g5l j (p1b)/(hj 111l j1l j 11), and b
that can be calculated froml j 21(p2b2a)2l j (p2g
1b)1hjb50. If we let everyl j be of O(l) and O(l)
!O(hj ), then we can expand the energy as a series

H52hj1O~l!. ~15!

For smalll, hj determines the pinning potential height wh
the kink is on top of a junction.

The above calculation gives some intuition on the diff
ent ways of designing a ratchet pinning potential. For
stance, alternating critical currents in the array will not p
duce a ratchet pinning potential since the potential will s
have reflection symmetry. In this paper we have experim
tally studied one possible way of breaking this reflecti
symmetry by using alternate critical currents and plaqu
areas. However, another possibility corresponds to hav
three different critical currents while maintaining equal are
for all the cells.

To test these ideas, we have numerically integrated
~4! for the case of a 9 junctions array. We lethj 2151, hj
50.5, andhj 1150.25 ~with hj 135hj ) and use the experi
mentally realizable value ofl j50.25 for all j. We set the
kink numberM and the initial conditions as described in th
previous section. We then sweep the applied current in b
the positive and negative direction to calculate the depinn
current. Figure 10~a! shows the result of the simulation.

There are three features in the depinning current vsM
graph. First, the kink is traveling in a ratchet pinning pote
tial. For M51, as the current is swept in the positive dire
tion the depinning current is different than when it is swe
in the negative direction. Second, the depinning current
the expected odd inversion symmetry; that isI dep1(M )
5I dep2(T2M ). Thirdly, the depinning current is periodi
with period T59. All these features were predicted by th
theory developed above.

The observation that the kink is traveling in a ratchet p
ning potential can be directly verified by calculating the p
ning potential. We will use both the analysis described ab
and the numerical method used in Ref.@12#, which allows us
-
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to compute the energy of the kink as it moves from a ma
mum to a minimum. The position of the kink in the array
calculated with

Xcm5
1

2
1

1

2p (
j 51

N

j ~w j 112w j !. ~16!

In Fig. 10~b! we have plotted the numerically calculated pi
ning potential. We place the kink on the energy maximu
and perturb it along the unstable direction and calculate
energy using Eq.~11! and the kink position using Eq.~16!.
We have also superimposed the values of the kink pinn
potential calculated from the above perturbative analysis.
have used the linearized results to calculate the phases
Eq. ~11! to calculate the energy. The circles represent
energy when the kink is approximately on a junction wh
the squares are the energy when the kink is approximate
a plaquette center. We see that the pinning potential is ind
asymmetric and that the analysis agrees well with the
merical result.

V. SUMMARY

We have shown that an inhomogeneous para
Josephson-junction array provides an ideal experimental
tem to study kink motion in different potentials. In particula
we have designed a ratchet potential in an array with a r
geometry. One way of designing a ratchet potential is
varying cell inductances and junction areas. We have veri
experimentally and numerically that a kink, and even a tr
of kinks, requires a different amount of force to depin
positive and negative directions. One interesting result
the inhomogeneous rings is that the periodicity inM of the
system will depend only on the inductance ratios of conse
tive cells. As a consequence, it is possible to design a sm
ring, e.g.,N58, such that one can distinguish between hu
dreds of states with different number of trapped kinks.

FIG. 10. ~a! Simulated depinning currents forN59 ring with
l j50.25 andhj 2151, hj50.5, andhj 1150.25. Solid lines are the
depinning current as current is increased or decreased while
dashed line is the difference of the up and down depinning curr
~b! Numerically calculated pinning potential. Symbols are analy
cal calculation of the energy when a kink is in a plaquette~squares!
and on a junction~circles!. The actual kink position is calculate
using Eq.~16!. The dashed line is a guide to the eye.
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We have also shown that a ratchet kink potential can
obtained by using junctions with three different critical cu
rents. In this case, the inductances of all cells are equal
the array has a period inM equal to the number of junctions

We expect to investigate a kink in our ratchet poten
with an ac bias to show that there is a rectifying effect: the
force leads to kink drift in a preferred direction. This Brow
ian rectifier has the added technical benefit that the dc v
age response is quantized@12#. This opens up the possibility
of designing electronic detectors that can directly meas
the amplitude~instead of just the frequency! of an applied
signal very accurately.

The ideas studied in this paper can be extended to
study of vortex depinning, vortex motion and flux flow
ratchet 2D Josephson-junction arrays. We just need to de
a 2D array with an appropriate combination of critical cu
rents and cell areas in the direction of vortex motion, wh
is perpendicular to the current injection direction.

Another way of designing a ratchet effect is by contr
ling the critical current of the individual junctions of a reg
lar homogeneous array with the application of an exter
magnetic field. In this way, we can make a physical reali
tion of a ‘‘flashing ratchet.’’ The mechanics of motion
well understood@3,5#. The pinning potential is removed pe
riodically. In the interval in which the potential is off, pa
ticles can diffuse freely. After restoration of the pinning p
tential, most of the particles localize again in the minimu
of the next lattice site giving a net motion~in the opposite
direction of the ‘‘rocking ratchet’’!. However, as we have
seen temperature~i.e., diffusion! does not play an importan
role in the motion of the kink. Nevertheless, one can dev
a new mechanism for the kink motion in this context. Aft
the removal of the pinning potential, kinks delocalize in
asymmetric way and localize again~when the pinning poten
tial appears! in the next plaquette. Preliminary numeric
simulations confirm this scenario.

The study of inhomogeneous 1D arrays of Joseph
junctions can also help to elucidate pinning mechanism
both 2D Josephson-junction arrays and superconducting
films. Also, systems in which critical currents are modula
@22# can show complex and interesting dynamical behav
In these systems and mainly in the presence of ac driving
expect the appearance of new collective coherent vortex
tion which can give a mode-locking response. Thus, th
ratchet arrays may be used as inspiration for devices that
advantage of the properties of directional transport, rectifi
tion, and quantized response to ac driving.

An interesting application of directional motion of vort
ces has already been proposed in Ref.@7#. An appropriate
ratchet potential~via the modulation of the thickness of th
superconductor! is used to eliminate vortices from the th
film. This ‘‘cleaning’’ is also convenient in 1D and 2D
Josephson-junction arrays in which the presence of trap
flux breaks the phase coherence of, for instance, arrays
as radiation sources or complex rapid single flux quant
~RSFQ! circuits. It appears that our ratchet pinning potent
could be used to ‘‘clean’’ this trapped flux.

In summary, we have shown that inhomogeneous para
arrays of Josephson arrays are ideal model systems fo
study of flux pinning. We have also shown that there
different ways to build a ratchet pinning potential, and ha
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found an excellent agreement between experiments
theory.
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APPENDIX

In this appendix we calculate the periodicity in the num
ber of kinksM of Eq. ~4! for a general inhomogeneous rin
array. Importantly, this period depends only on the ratio
tween consecutivel ’s and it is independent of the order o
such ratios and the values of the critical currents.

As in the main text, we will use the following transfor
mation for the phases:

c j5w j12pmj , ~A1!

wheremj is an integer. Equation~6! is the new equation of
motion in the new variables. The new boundary condition
the transformed variables becomesc j 1N5c j12p(M1T)
with T5mj 1N2mj . The strategy to calculate the periodT
will be to find a set of integers that eliminate themj depen-
dence in the right hand side of Eq.~6!. We will look for
solutions where mj2mj 211(mj2mj 11)l j /l j 2150.
Clearly, this condition is independent ofhj and only depends
on the ratiosl j /l j 21.

First we let l j /l j 215pj /qj with pj and qj coprime.
Since only differences ofmj are needed, we letm150 with-
out loss of generality. Then we solve form3 in terms ofm2,

m35
p21q2

p2
m2 . ~A2!

Similarly, m4 in terms ofm3 is

m45
q2q31p3~p21q2!

p3~p21q2!
m3 . ~A3!

After some algebra we find the following recursive formu
for mj 11 /mj :

mj 11 /mj5j j 11 /pjj j , ~A4!

with

j j5)
k52

j 21

qk1pj 21j j 21 . ~A5!

Herej251 andj 53 to N11. We have now derived that th
ratio of mj 11 /mj is a ratio of integers. So in principle, w
can find an integer for everymj .

To find a set of integers formj we start at the most com
plex ratio: mN11 /mN . We take mN115jN11 and mN
5pNjN . By back substituting, we find
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mj5j j)
k5 j

N

pk ~A6!

for j 52 to N and withm150.
It is straightforward to find the period. Since we ha

takenm150 the period can be most easily expressed aT
5mN11,

T5)
k52

N

qk1pNjN . ~A7!

For consistency we also check that the equations atj 51 are
satisfied:m01m2l1 /lN50. It is relatively easy to find tha
m052)k52

N qk . The period calculated usingT5mN2m0

also yields Eq.~A7!. This completes the existence that
inhomogeneous parallel array with consecutivel ’s that are
rational numbers has a period inM.

This procedure, however, will not necessarily yield t
minimum period. To calculate the minimum period we ne
to find the smallestmN11. For each ratio ofmj , we can
make the numerator and denominator ofj j 11 /pjj j relatively
prime by dividing by their greatest common divisor~GCD!.
We start with the last ratiomN11 /mN5jN11 /pNjN . If we
let y5GCD(jN11 ,pNjN) then mN115jN11 /y and mN
5pjjN /y. However, we also need to be able to consisten
change mN . That is, the ratio mN /mN215pNjN /
pNpN21jN21 should still be valid. This implies thaty
has to be a multiple ofmN21 as well. By iterating, we see
x

tz

R.

tt.
d

y

that y has to be a multiple of all themj . Therefore, let
x5GCD(mN11 ,mN , . . . ,m2). The minimum integer period
is then

T5S )
k52

N

qk1pNjND Y x. ~A8!

As an example, let us consider the regular ring withl j
5l. HerejN115N, GCD(N,N21,N22, . . . ,1)51 andT
5N as expected from the homogeneous sine-Gordon e
tion. This explains the observation in Fig. 10 thatT59.

As another example, we consider the ring with alternat
areas. Letl j /l j 215p/q for j even andl j /l j 215q/p for j
odd. Thenj35p1q, j452pq1q2, and

jN5
N

2
pN/221qN/2211S N

2
21D pN/222qN/2 ~A9!

for N even. Also

)
k52

N

qk5pN/221qN/2. ~A10!

Then,x5GCD(mN11 ,mN , . . . ,m2)5pN/221qN/221 and

T5~N/2!p1~N/221!q1q

5~p1q!N/2. ~A11!

We have recovered the same result derived in the main t
h-
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